
RESEARCH PROJECT: CONTROLLABILITY FOR NONLINEAR

WAVE EQUATION

This research project concerns the control theory of the semilinear wave equation,
which appears in many physical models. This problem has already been treated for
some types of nonlinearity (see references below). The goal of this project is to treat
the cases of supercritical and focusing nonlinearities, which are almost completely
open. We would like in particular to apply the methods developed recently to study
the dynamics of focusing wave equations (see e.g. [6]) to the control theory of these
equations.

We first review aspects in the case of a linear wave equation. An important
property is the observability in time T , that is the fact that one can estimate a
solution, only from the knowledge of this solution in a particular region of the
space during a time interval of length T . This observability property can be of
great importance for imaging techniques when one wishes to understand properties
of a the inside of a body by probing it with waves. One can think of medical
imaging at the scale of acoustic ultrasound waves yet also of seismic imaging at the
scales of elastic waves with wavelength of hundreds of meters or more.

For linear wave equations, high-frequency information is known to travel along
rays of geometrical optics. Hence, if one wishes to observe a wave in some time
interval of length T one necessarily needs to require the following geometric control
condition: every possible ray has to enter the region of observation within that
time T after its initiation. A major result in the early 90’s is that of C. Bardos,
G. Lebeau and J. Rauch: the previous geometrical condition is not only necessary,
it is also sufficient for the observability of wave in time T . The true “tour de force”
of Bardos-Lebeau-Rauch was their ability to obtain this result even in the pres-
ence of a boundary on which rays of geometrical optics bounce. Even then, the
geometrical condition fully captures high-frequency information on the solution;
this property is now better understood by the use of semiclassical measures asso-
ciated with sequences of solutions and concentration phenomena. Such measures
get transported along the bicharacteristic flow, with reflections at boundaries, or
more complex phenomena depending on how a ray reaches or leaves the boundary:
transversally, tangentially... at various orders. Furthermore, the geometrical condi-
tion fully captures low-frequency information; this is based on unique continuation
arguments for the wave equation.

Once observation for waves is understood, this property naturally translates into
exact controllability properties, that is, the ability to start from any state and to
reach any other prescribed state by only acting on the solution in the observation
region, called “control region” in that framework. Equivalent is also the stabi-
lization of the wave equation by means of a localized damping term. Assuming
the geometric control condition, one proves that the energy of the waves decays
exponentially, a remarkable property if compared to the default logarithmic de-
cay obtained if damping occurs in a region that does not satisfy the geometrical
condition described above. The exact controllability property can be important if

1

Sujet proposé par Jérôme Le Rousseau et Thomas Duyckaerts



2 PROJET DE RECHERCHE

one tries to achieve a particular state for a wave, for instance focusing energy in a
particular point. Damping and fast energy decay can also be essential; think of an
elastic structure like an airplane wing: stabilization in the case of oscillation sounds
like a property to look forward to.

In this project, we would like to consider nonlinear wave equations, that is add
to the linear wave equation mention aboved a nonlinearity, which is typically a
power of the solution. The equation has a conserved energy. Depending on the
sign of the nonlinearity, the equation is said to be defocusing or defocusing. In
the defocusing case, the terms in the energy all have the same sign and the energy
gives a good control of the solution. Blow-up in finite time is usually excluded.
In the focusing case, the nonlinear term can provoke blow-up in finite time. The
power of the nonlinearity is also relevant, the energy is said to be (energy) subcrit-
ical/critical/supercritical if its power is below/equal to/above a certain threshold
linked to the scaling of the energy. The energy conservation law is effective in the
subcritical case, and almost useless in the supercritical one.

The controllability of nonlinear wave equation was mainly considered for energy-
subcritical, defocusing nonlinearities. In this case it has been proved in [8] (see also
[4], [3], [7]) that the GCC implies the controllability. Note that [8] considers much
more general nonlinearities.

The defocusing, critical case was treated in [10], where controllability was proved
under a condition slightly stronger than the geometrical condition and a smallness
condition on the low-frequency of the data.

Very few is known when the nonlinearity is focusing. Indeed, only the related
stability problem when Ω = Rn was treated in [1] (see also [2]). As observed in
[11], it follows from finite speed of propagation that the geometrical condition is
not sufficient for controllability: if a solution of the equation without control blows
up in finite time T , and if T is smaller than the time given by the geometric control
condition, then controllability is impossible for this initial data.

In this research project we would like to consider the controllability for the
nonlinear wave equation in cases that are not treated by the works cited above, and
in particular when the nonlinearity is focusing. It is reasonable to conjecture that
if the geometric control condition is satisfied in time T , and the solution without
control is global or blows up in finite time T ′ larger than T , then the solution is
controllable to 0.

A first step of this project would be to consider the case of one space dimension,
and a second step would be to consider a bounded domain in higher dimension,
with a stronger condition than the geometric control condition (typically a geo-
metrical condition such that multipliers method are available). This can be done
first for subcritical nonlinearities (in the continuity of the master internship of the
applicant, concerning the article [7]), then for critical (and if possible, supercriti-
cal) nonlinearities. An other interesting problem would be to consider, as in [1],
the stabilization property. The strong condition in [1] on the initial data excludes
the blow-up in finite time, and we would like to treat more general cases in ac-
cordance with our conjecture. Another related problem (linked to the internship
of the applicant with Laurie Oksanen) is the inverse problem for nonlinear wave
equations.

As mentioned before, one goal of this project is to adapt methods that have
been developed in the study of the dynamics of the nonlinear wave equation in the
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setting of control theory. These methods include compactness/rigidity argument
(see [9]), the method of channels of energy (see e.g. [6]) and generalized Morawetz
estimate as in [5]).

Research plan.

(1) First months: control and stability in space dimension 1, generalization of
the results of [11].

(2) End of the first year and second year: control and stability of focusing,
subcritical wave equations in higher space dimensions (following references
[1], [7], [8]).

(3) Third year: critical nonlinearity (generalization of [10] to the focusing case).
Supercritical case and/or inverse problems.
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